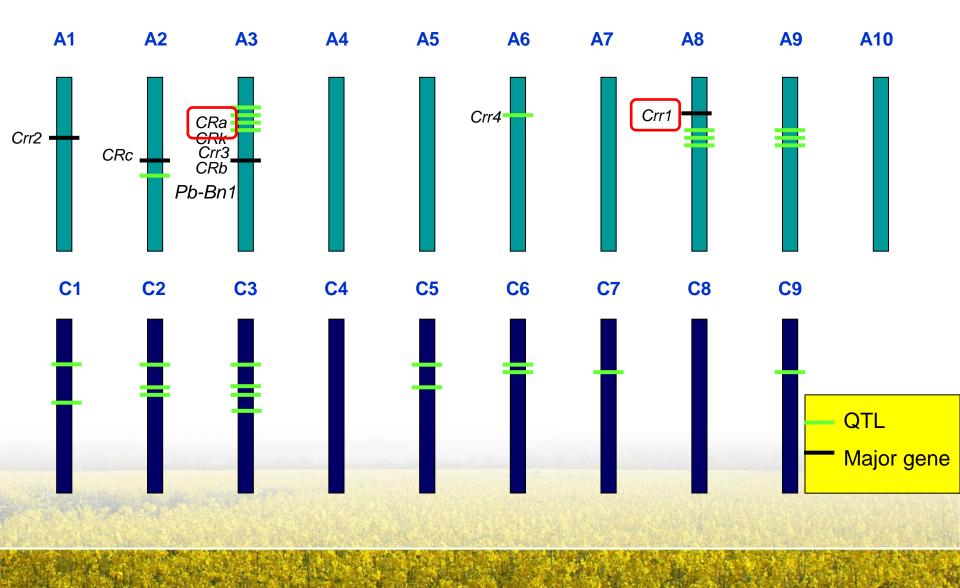



## Identification of clubroot-resistance genes and development of clubroot resistant canola germplasm

Fengqun Yu, Gary Peng, Kevin C. Falk and Isobel A.P. Parkin




#### Sources of resistance identified in Brassica species



With the exception of *B. juncea* and *B. carinata*, genotypes with resistance to one or more pathotypes of *P. brassicae* can be found in all major brassica crops.

### Mapping of clubroot resistance genes



#### Developing CR canola and mustard at Saskatoon, AAFC

#### Methods

- molecular genetics
- conventional breeding
- Unique CR materials identified in Saskatoon Research Centre
  - A total of 955 accessions in six cultivated species for resistance to pathotype 3 of *P. brassicae*
  - Selected CR lines tested with pathotypes 2, 5, 6 & 8
  - Eight accessions in diploid species highly resistant to all Canadian pathotypes
- Identification of CR genes through genetic mapping
- Development of molecular markers closely linked to CR genes
- Molecular cloning of CR genes
- Introgression of CR genes into canola and mustard
  - > AAFC canola: two *B. napus* lines and one *B. rapa* line
  - Viterra canola: three B. napus lines and one B. juncea line
  - > AAFC mustard: two *B. carinata* lines

#### Sources of clubroot resistance used at Saskatoon, AAFC

B. rapa ssp. pekinensis Chinese cabbage



*B. rapa* ssp. *chinensis* Bok choy



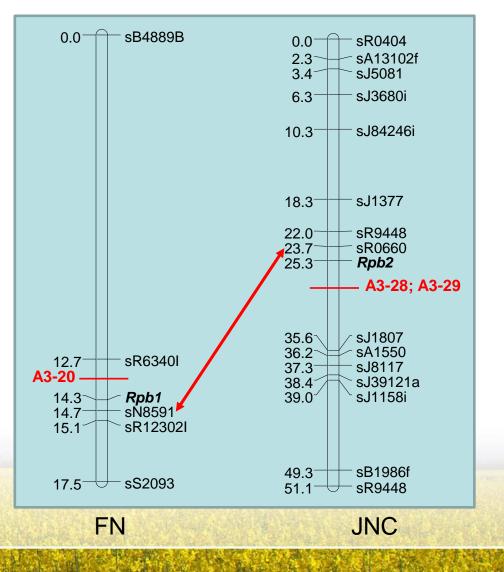
*B. rapa* ssp. *rapifera* Turnip



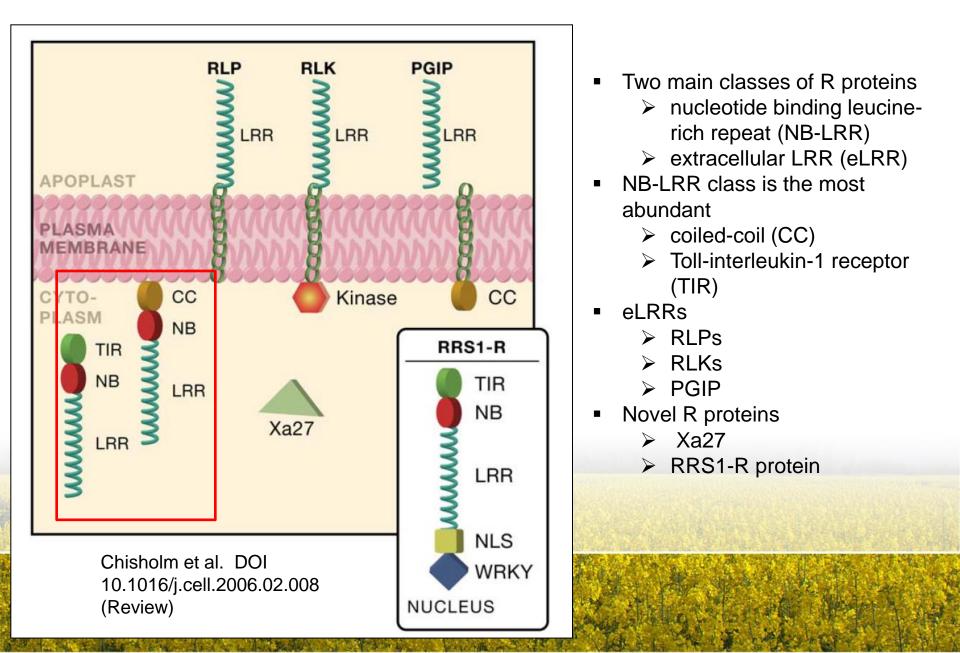







B. oleracea ssp. botrytis Cauliflower

B. oleracea ssp. capitata Cabbage


B. nigra **Black mustard** 

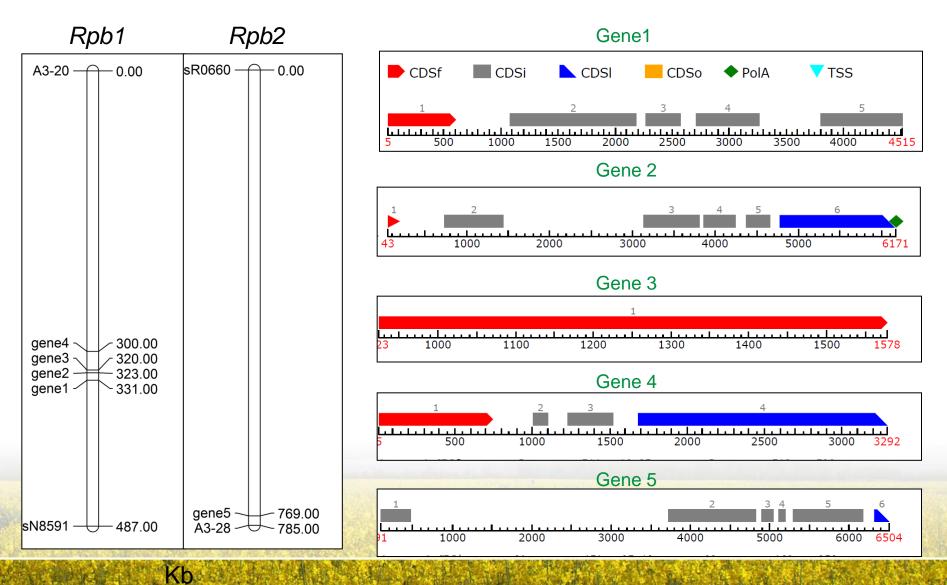
#### Mapping of two CR genes in *B. rapa* into A3

- Two vegetable cultivars
  - B. rapa ssp. chinensis, cv FN
  - *B. rapa* ssp. *pekinensis*, cv JNC
- AAFC microsatellite markers
  - A-genome of *B. napus*
- CAPS markers developed for fine mapping
  - B. rapa sequencing information at
    - http://brassicadb.org/brad/
- Molecular markers available for MAS



#### **Classes of Resistance Proteins**



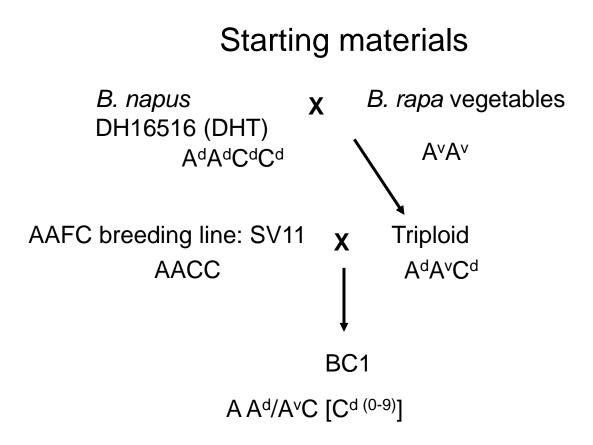

#### Resistance genes in B. rapa

http://brassicadb.org/brad/Rgene.php

| Index | Gene family             | Number of genes |  |  |  |  |  |
|-------|-------------------------|-----------------|--|--|--|--|--|
| 1     | CC-NB5                  | <u>14</u>       |  |  |  |  |  |
| 2     | CC-NBS-LRR              | <u>41</u>       |  |  |  |  |  |
| 3     | NBS                     | 2               |  |  |  |  |  |
| 4     | NBS-CC-NBS              | 1               |  |  |  |  |  |
| 5     | NBS-LRR                 | 20              |  |  |  |  |  |
| 6     | NBS-LRR-TIR-NBS-LRR     | 1               |  |  |  |  |  |
| 7     | TIR-NB5                 | 22              |  |  |  |  |  |
| 8     | TIR-NBS-LRR             | <u>90</u>       |  |  |  |  |  |
| 9     | TIR-NBS-LRR-NBS-LRR     | 1               |  |  |  |  |  |
| 10    | TIR-NBS-LRR-TIR         | 2               |  |  |  |  |  |
| 11    | TIR-NBS-LRR-TIR-NBS-LRR | 1               |  |  |  |  |  |
| 12    | TIR-NBS-TIR-NBS-LRR     | 1               |  |  |  |  |  |
| 13    | TIR-NBS-X               | 1               |  |  |  |  |  |
| 14    | TIR-Only                | 35              |  |  |  |  |  |
| 15    | TIR-TIR                 | 2               |  |  |  |  |  |
| 16    | TIR-X                   | 3               |  |  |  |  |  |

Two cloned CR genes CRa and Crr1 encode TIR-NBS-LRR proteins.

#### Molecular cloning of CR genes




#### Generation of transgenic canola lines - complementation analysis

- Difficult to generate *B. rapa* transgenic plants
- B. napus DH12075
- Agrobacterium-mediated transformation
- Seeds of T1 will be obtained in three months.

| TIR-NBS-LRR | CR candidate | No. of transformants |  |  |  |  |
|-------------|--------------|----------------------|--|--|--|--|
| Gene1       | Rpb1         | 137                  |  |  |  |  |
| Gene2       | Rpb1         | 44                   |  |  |  |  |
| Gene3       | Rpb1         | 21                   |  |  |  |  |
| Gene4       | Rpb1         | 15                   |  |  |  |  |
| Gene5       | Rpb2         | 61                   |  |  |  |  |

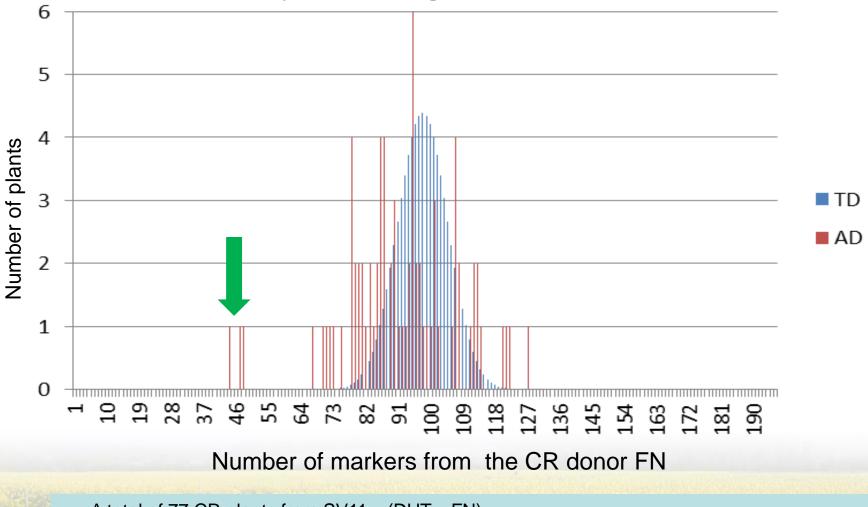




- Transfer resistance genes from *B. rapa* vegetables into *B. napus*
- Recover full set of C-genome chromosomes (9 pairs)
- Eliminate unnecessary genetic background from the vegetables

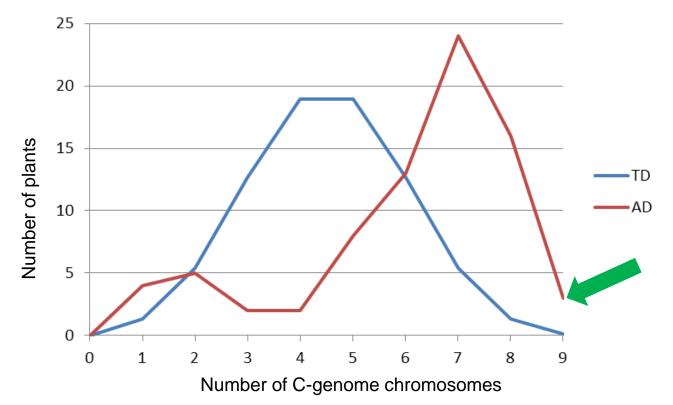
#### Introgression of CR genes into canola






FN (*Rpb1*) CR donor

SV11 Canola


- A total of 173 BC<sub>1</sub> were tested for resistance to clubroot
- 94R:79S; fit 1:1 (X<sup>2</sup>= 1.30, P= 0.254)
- 77R plants were selected for genomewide SNP marker analysis using 6K
   Illumina SNP assay

#### **Analysis of A-genome markers**



- A total of 77 CR plants from SV11 x (DHT x FN)
  198 polymorphic robust markers almost evenly distributed on A-genome chromosomes
- Theoretical distribution (TD): binomial; parameters N = 198 and P = 50%
- Actual distributions (AD)

#### Analysis of C-genome markers



- Theoretical distribution (TD): binomial; parameters N = 9 and P = 50%; average = 4.5
- Actual distributions (AD): More plants with 6 to 9 C-genome chromosomes; average = 6.1
- High frequency of C-genome transmission

#### Introgression of CR genes into canola

|                                | AAFC elite line | Topas | CR donor |              | SV11 x (DHT x PN) |         |              |        |        |
|--------------------------------|-----------------|-------|----------|--------------|-------------------|---------|--------------|--------|--------|
|                                | SV11            | DHT   | FN       | BC1-33       | BC1-135           | BC1-126 | BC1-66       | BC1-19 | BC1-48 |
| No of A-genome markers from FN | 0               | 0     | 198      | 44           | 47                | 48      | 78           | 92     | 112    |
| % A-genome markers from FN     | 0.0             | 0.0   | 100.0    | 22.4         | 24.0              | 24.5    | 39.8         | 46.9   | 57.1   |
| No of C genome chromosomes     | 9               | 9     | 0        | 8            | 6                 | 7       | 9            | 9      | 9      |
|                                |                 |       |          | $\checkmark$ |                   |         | $\checkmark$ |        |        |

- BC<sub>1</sub> plants carrying limited genetic background from the CR donor and a full set of C-genome chromosomes were identified through genome wide marker selection
- The recipients of CR genes: B. napus, B. rapa and B. juncea canola
- BC<sub>2</sub> CR plants have been obtained

#### **Developing CR** *B. carinata* – a crop for biofuel

- Two elite *B. carinata* lines
  - 080798EM-086 and 080798EM-148
  - Doubled haploid
  - Yellow seeded
- Two B. nigra CR lines
  - BRA and PI
  - Single genes control CR
- Introgression of CR genes from the B. nigra into the B. carinata
  - Determined the number of C-genome chromosomes in BC<sub>1</sub> by analysis of SSR markers



Obtained BC<sub>2</sub> plants

### **Further work**

- Map CR genes in *B. rapa* (two turnips), *B. oleracea* (two cabbage and three cauliflowers) and two *B. nigra* lines
- Develop robust SNP markers for MAS
- Introgress CR genes identified into *B. napus*, *B. rapa*, *B. carinata* and *B. juncea* breeding lines
- Developing near-isogenic lines for differentiating pathotypes of *P. brassicae* and canola resistance to clubroot
- Re-synthesize amphidiploid species highly resistant to clubroot using CR diploid species
- Molecular cloning and characterization of CR genes

### Acknowledgements

Dr. Chu Mingguang Dr. Liu Xunjia Dr. Zhang Xingguo Dr. Elmira Yazdi

Adrian Chang Linda McGregor Erin Higgins

AAFC Growing Forward I SaskCanola





# Thank you!



